• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Qi, Yuanyuan (Qi, Yuanyuan.) | Zhang, Jiayue (Zhang, Jiayue.) | Liu, Yansong (Liu, Yansong.) | Xu, Weiran (Xu, Weiran.) | Guo, Jun (Guo, Jun.)

收录:

CPCI-S EI Scopus

摘要:

Contextualized neural language models have gained much attention in Information Retrieval (IR) with its ability to achieve better text understanding by capturing contextual structure. However, to achieve better document understanding, it is necessary to involve global structure of a document. In this paper, we take the advantage of Graph Convolutional Networks (GCN) to model global word-relation structure of a document to improve context-aware document ranking. We propose to build a graph for a document to model the global structure. The nodes and edges of the graph are constructed from contextual embeddings. Then we apply graph convolution on the graph to learning a new representation, and this representation covers both contextual and global structure information. The experimental results show that our method outperforms the state-of-the-art contextual language models, which demonstrate that incorporating global structure is useful for improving document ranking and GCN is an effective way to achieve it. © 2020 ACM.

关键词:

Knowledge management Search engines Topology Computational linguistics Convolutional neural networks Convolution

作者机构:

  • [ 1 ] [Qi, Yuanyuan]Beijing Unviersity of Posts and Telecommunications, Beijing, China
  • [ 2 ] [Zhang, Jiayue]Beijing University of Technology and Ministry of Education China, Beijing, China
  • [ 3 ] [Liu, Yansong]Beijing Unviersity of Posts and Telecommunications, Beijing, China
  • [ 4 ] [Xu, Weiran]Beijing Unviersity of Posts and Telecommunications, Beijing, China
  • [ 5 ] [Guo, Jun]Beijing Unviersity of Posts and Telecommunications, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2020

页码: 2173-2176

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 7

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:157/3918416
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司