• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Du, Jinlian (Du, Jinlian.) | Jin, Xueyun (Jin, Xueyun.) | Wang, Peng (Wang, Peng.)

收录:

EI Scopus

摘要:

Word segmentation is a basic topic in the field of natural language processing, and improving the accuracy of word segmentation is a key problem. With the popularity of microblog, accurate word segmentation for microblog text has become a hot spot. However, microblog texts often contain information about multiple related domains, ambiguous words in multi-domain will lead to the decline of word segmentation accuracy. Based on the model theory of word vector and branching entropy, this paper proposes a multi-domain global correlation degree branching entropy method for microblog text word segmentation. This model is applied to microblog text about house price topic in Beijing. The precision, recall and F-measure of this method are compared with branching entropy model proposed by Zhang[6], and the experimental results show that our method outperforms it. © 2020 ACM.

关键词:

Natural language processing systems Computational linguistics

作者机构:

  • [ 1 ] [Du, Jinlian]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 2 ] [Jin, Xueyun]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 3 ] [Wang, Peng]Information Technology Department, HUAXIA Bank Beijing Branch, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2020

页码: 71-75

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:775/3905153
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司