• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Mengxing (Li, Mengxing.) | Wang, Suyu (Wang, Suyu.)

收录:

EI

摘要:

Low illumination image has the characteristics of low overall brightness, contrast and signal-to-noise ratio. The classical image enhancement algorithms have limited enhancement effect and need to adjust parameters manually. In this paper, a deep full convolutional coding-decoder based on U-type network is proposed to solve the problem of low illumination image degradation. The experimental results show that, compared with the existing mainstream image enhancement algorithms, the proposed algorithm can improve the brightness and contrast adaptively, avoid artifacts on image edges, and further improve the objective evaluation index and subjective evaluation. © 2020, Springer Nature Singapore Pte Ltd.

关键词:

Computation theory Convolution Convolutional neural networks Edge detection Image coding Image enhancement Luminance Signal to noise ratio

作者机构:

  • [ 1 ] [Li, Mengxing]Beijing Engineering Research Center for IoT Software and Systems, Beijing, China
  • [ 2 ] [Li, Mengxing]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 3 ] [Wang, Suyu]Beijing Engineering Research Center for IoT Software and Systems, Beijing, China
  • [ 4 ] [Wang, Suyu]Faculty of Information Technology, Beijing University of Technology, Beijing, China

通讯作者信息:

  • [li, mengxing]beijing engineering research center for iot software and systems, beijing, china;;[li, mengxing]faculty of information technology, beijing university of technology, beijing, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 1876-1100

年份: 2020

卷: 551 LNEE

页码: 20-30

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:197/3605529
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司