• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Imran, Azhar (Imran, Azhar.) | Li, Jianqiang (Li, Jianqiang.) (学者:李建强) | Pei, Yan (Pei, Yan.) | Mokbal, Fawaz Mahiuob (Mokbal, Fawaz Mahiuob.) | Yang, Ji-Jiang (Yang, Ji-Jiang.) | Wang, Qing (Wang, Qing.)

收录:

EI

摘要:

Cataract is one of the prevailing cause of blindness in the industrial world that accounts for more than 50% of blindness. The early detection of cataract can protect serious threats of visual impairment. Most of the existing work is based on manual extraction of features, but this paper aims at automatic detection of a cataract into its different grades using deep convolutional neural network integrated with data augmentation techniques. The Gaussian-scale space theory and the general data augmentation settings are used to improve the dataset in terms of quality and quantity, which lead to overcome the issues of the unbalanced dataset. The training and testing of the proposed model are performed on both the original dataset and the augmented dataset. The model accuracy of the convolutional neural network with augmented dataset presented in this paper is 0.9691, which shows an optimal performance compared with the original dataset, and other methods. © 2020, Springer Nature Singapore Pte Ltd.

关键词:

Computation theory Convolution Convolutional neural networks Deep neural networks Eye protection Ophthalmology Statistical tests

作者机构:

  • [ 1 ] [Imran, Azhar]School of Software Engineering, Beijing University of Technology, Beijing, China
  • [ 2 ] [Li, Jianqiang]School of Software Engineering, Beijing University of Technology, Beijing, China
  • [ 3 ] [Pei, Yan]Computer Science Division, University of Aizu, Aizuwakamatsu, Japan
  • [ 4 ] [Mokbal, Fawaz Mahiuob]School of Software Engineering, Beijing University of Technology, Beijing, China
  • [ 5 ] [Yang, Ji-Jiang]Research Institute of Information Technology, Tsinghua University, Beijing, China
  • [ 6 ] [Wang, Qing]Research Institute of Information Technology, Tsinghua University, Beijing, China

通讯作者信息:

  • 李建强

    [li, jianqiang]school of software engineering, beijing university of technology, beijing, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 1876-1100

年份: 2020

卷: 551 LNEE

页码: 148-160

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 5

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:202/3603369
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司