• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Huang, Xiaodong (Huang, Xiaodong.) | Peng, Lei (Peng, Lei.) | Lu, Cheng (Lu, Cheng.) | Bi, Jing (Bi, Jing.) | Yuan, Haitao (Yuan, Haitao.)

收录:

EI

摘要:

In light curves (LCs), the brightness of stars is associated with time, and so is its image. The traditional data processing methods cannot effectively handle real-time and large-volume data of various LCs. To address this issue, this work develops a deep neural network named Dropout-based Recurrent Neural Networks (DRNN). It extracts complicated features of all images captured by Mini Ground-based Wide-Angle Camera array (Mini-GWAC) for point source extraction and cross-certification through Long Short-Term Memory units. DRNN can also produce warnings for abnormal values of light change curves. Furthermore, this work optimizes the training model by combining a dropout method with an adaptive moment estimation algorithm to iteratively update the network weight of the RNN based on the LCs data. Extensive experiments with a Mini-GWAC dataset demonstrate that DRNN outperforms several typical methods in terms of prediction performance of star brightness in large-scale astronomical LCs. © 2020 IEEE.

关键词:

Anomaly detection Data handling Deep neural networks Iterative methods Large dataset Luminance Recurrent neural networks Stars

作者机构:

  • [ 1 ] [Huang, Xiaodong]Naval Aeronautical University, Shandong; 264001, China
  • [ 2 ] [Peng, Lei]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Lu, Cheng]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Bi, Jing]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 5 ] [Yuan, Haitao]New Jersey Institute of Technology, Department of Electrical and Computer Engineering, Newark; NJ; 07102, United States

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2020

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:99/3603064
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司