• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wu, Shaomin (Wu, Shaomin.) | Wu, Di (Wu, Di.) | Peng, Rui (Peng, Rui.) (学者:彭锐)

收录:

EI

摘要:

Reliability and maintenance (RM) engineering is conventionally notorious for a lack of sufficient failure data to develop robust statistical models. The increasing miniaturization of data collection devices such as wireless sensors has provided a promising infrastructure for gathering information about parameters of the physical systems, which enable practitioners and researchers to apply machine learning (ML) algorithms to improve the efficiency of RM analysis. The number of published papers on ML in RM is enormous, this paper will therefore categorizes those papers that were published between 2017 to 16/May/2020, that are written in English, that have received a top 5% number of citations in the year published, and that use support vector methods, random forests, and cluster analysis. © 2020 IEEE.

关键词:

Cluster analysis Decision trees Machine learning Maintenance Reliability

作者机构:

  • [ 1 ] [Wu, Shaomin]University of Kent, Kent Business School, Canterbury, United Kingdom
  • [ 2 ] [Wu, Di]Xi'An Jiaotong University, School of Management, Xi'an, China
  • [ 3 ] [Peng, Rui]Beijing University of Technology, School of Economics and Management, Chaoyang, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2020

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:224/3608431
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司