• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Feng, Tian (Feng, Tian.) | Man, Dapeng (Man, Dapeng.) | Fu, Hao (Fu, Hao.)

收录:

EI Scopus

摘要:

In recent years, the gradual popularization of mobile terminals and the vigorous development of the network have spawned the birth of a new Internet structure and promoted the growth of network traffic. Behind such a large network, effective supervision of network traffic is the cornerstone of network security protection. At present, many studies on the direction of network supervision focus on the analysis of unknown network protocol types. The protocol identification method combined with machine learning is a hot topic in this kind of research. This method extracts data stream features and builds data sets, using machine learning algorithms. The model analyzes unknown network traffic and can obtain better recognition results than traditional network protocol analysis methods. Aiming at the problem of unknown traffic identification, this paper proposes a reasonable unknown traffic identification algorithm. The feature normalization preprocessing, feature selection, LOF outlier analysis, etc. are introduced. The clustering process uses the K-Means++ algorithm, and the maximum local reachable density point in the outlier analysis is used to realize the initial cluster center point. Accurate positioning. © 2020 Journal of Physics: Conference Series.

关键词:

Information systems Network security Statistics Learning algorithms Machine learning K-means clustering Data streams Internet protocols Information use

作者机构:

  • [ 1 ] [Feng, Tian]Bejing-Dublin International College at BJUT, Beijing University Of Technology, No.100, Pingleyuan, Chaoyang District, Beijing; 100000, China
  • [ 2 ] [Man, Dapeng]Information Security Research Center, Harbin Engineering University, China
  • [ 3 ] [Fu, Hao]Information Security Research Center, Harbin Engineering University, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 1742-6588

年份: 2020

期: 1

卷: 1646

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:358/3910650
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司