• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Su (Wang, Su.) | Wang, Shuo (Wang, Shuo.) | Zhou, Dong (Zhou, Dong.) | Yang, Yiran (Yang, Yiran.) | Zhang, Wenjie (Zhang, Wenjie.) | Huang, Tao (Huang, Tao.) | Huo, Ru (Huo, Ru.) | Liu, Yunjie (Liu, Yunjie.)

收录:

EI Scopus

摘要:

To minimize Flow Completion Time (FCT), existing flow scheduling schemes assume prior knowledge of accurate per-flow information, eg, flow sizes or deadlines, to achieve superior performance. In practice, it is hard to get accurate per-flow information, especially in multi-tenant cloud environments. Rather than such unrealistic assumption (using accurate per-flow information), this paper proposes a flow size estimation mechanism (called LFE), which uses machine learning algorithms to learn and explore the flow characteristics or patterns from historical data. LFE can estimate the flow size rapidly without accurate per-flow information. To evaluate the impact of flow size estimation on flow scheduling performance, we implement LFE in a flow-level simulator and test its performance with KMeans and PageRank workload, respectively. Compared with FLUX, the average FCT reduces 13% at 90% load. The results show that LFE has a better flow size prediction accuracy and can improve the flow scheduling performance. © 2020 IEEE.

关键词:

Scheduling Learning algorithms Machine learning

作者机构:

  • [ 1 ] [Wang, Su]State Key Laboratory of Networking and Switching Technology, BUPT, China
  • [ 2 ] [Wang, Su]Beijing Advanced Innovation Center for Future Internet Technology, Beijing, China
  • [ 3 ] [Wang, Shuo]State Key Laboratory of Networking and Switching Technology, BUPT, China
  • [ 4 ] [Wang, Shuo]Beijing Advanced Innovation Center for Future Internet Technology, Beijing, China
  • [ 5 ] [Zhou, Dong]State Key Laboratory of Networking and Switching Technology, BUPT, China
  • [ 6 ] [Zhou, Dong]Beijing Advanced Innovation Center for Future Internet Technology, Beijing, China
  • [ 7 ] [Yang, Yiran]State Key Laboratory of Networking and Switching Technology, BUPT, China
  • [ 8 ] [Yang, Yiran]Beijing Advanced Innovation Center for Future Internet Technology, Beijing, China
  • [ 9 ] [Zhang, Wenjie]State Key Laboratory of Networking and Switching Technology, BUPT, China
  • [ 10 ] [Zhang, Wenjie]Beijing Advanced Innovation Center for Future Internet Technology, Beijing, China
  • [ 11 ] [Huang, Tao]State Key Laboratory of Networking and Switching Technology, BUPT, China
  • [ 12 ] [Huang, Tao]Beijing Advanced Innovation Center for Future Internet Technology, Beijing, China
  • [ 13 ] [Huo, Ru]State Key Laboratory of Networking and Switching Technology, BUPT, China
  • [ 14 ] [Huo, Ru]Beijing University of Technology, Purple Mountain Laboratories, Nanjing, China
  • [ 15 ] [Huo, Ru]Beijing Advanced Innovation Center for Future Internet Technology, Beijing, China
  • [ 16 ] [Liu, Yunjie]State Key Laboratory of Networking and Switching Technology, BUPT, China
  • [ 17 ] [Liu, Yunjie]Beijing Advanced Innovation Center for Future Internet Technology, Beijing, China

通讯作者信息:

  • [huo, ru]beijing advanced innovation center for future internet technology, beijing, china;;[huo, ru]state key laboratory of networking and switching technology, bupt, china;;[huo, ru]beijing university of technology, purple mountain laboratories, nanjing, china

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

年份: 2020

页码: 1141-1146

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 6

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:266/3910480
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司