• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Yaojun (Wang, Yaojun.) | Li, Yangyang (Li, Yangyang.) | Sui, Jingyan (Sui, Jingyan.) | Gao, Yang (Gao, Yang.)

收录:

EI

摘要:

For each industry in the era of big data, a steady stream of data is generated continually. Due to the enormous information contained in big data, how to maximally extract the value from big data with lower cost to provide decision-making, guide production and resource allocation for the enterprises has attracted more and more attention of most enterprises. This paper proposes a data analysis solution in the era of big data-data factory, and implements a software system to build a data factory for an enterprise promptly and efficiently. By processing, analyzing and modeling the data in a workshop-based production mode similar to the traditional factories using raw materials, our data factory will acquire the analysis results and prediction models and then realize the clustering, classification, evaluation, and prediction data analysis. Moreover, the application of deploying data factory for an enterprise reveals that data factory is an efficient solution for big data analysis, and it improves the efficiency of enterprise data analysis. © 2020 IEEE.

关键词:

Big data Data streams Decision making Predictive analytics

作者机构:

  • [ 1 ] [Wang, Yaojun]China Agricultural University, College of Information and Electrical Engineering, Beijing, China
  • [ 2 ] [Li, Yangyang]Beijing University of Technology, School of Economics and Management, Beijing, China
  • [ 3 ] [Sui, Jingyan]Chinese Academy of Sciences, Institute of Computing Technology, Beijing, China
  • [ 4 ] [Gao, Yang]Beijing University of Technology, School of Economics and Management, Beijing, China

通讯作者信息:

  • [gao, yang]beijing university of technology, school of economics and management, beijing, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2020

页码: 28-32

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 5

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:120/3611633
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司