• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Akhtar, Faheem (Akhtar, Faheem.) | Li, Jianqiang (Li, Jianqiang.) (学者:李建强) | Pei, Yan (Pei, Yan.) | Xu, Yang (Xu, Yang.) | Rajput, Asif (Rajput, Asif.) | Wang, Qing (Wang, Qing.)

收录:

EI

摘要:

In the large for gestational age infant’s classification and prediction, noisy features are distilled to improve the classifier performance. It is accomplished with the creation of a suitable feature vector followed by GridSearch-based Recursive Feature Elimination with Cross-Validation (RFECV) scheme. It attempts to elect features that are influential and independent. We executed experiments on the data obtained from the National Pregnancy and Examination Program of China (2010–2013). The results are compared with the results already reported in the literature. The GridSearch-based RFECV scheme exhibited smaller features subset size with an increased classifier performance. The precision and area under the curve (AUC) scores are drastically improved from 0.7134 and 0.7074 to 0.96 to 0.86 respectively. Therefore, pediatricians are suggested to use fifty-three features subset, ranked by GridSearch-based RFECV scheme using Support Vector Machine (SVM) for the establishment of an efficient LGA prognosis process. © 2020, Springer Nature Singapore Pte Ltd.

关键词:

Classification (of information) Computation theory Learning systems Predictive analytics Support vector machines

作者机构:

  • [ 1 ] [Akhtar, Faheem]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Akhtar, Faheem]Department of Computer Science, Sukkur IBA University, Sukkur; 65200, Pakistan
  • [ 3 ] [Li, Jianqiang]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Pei, Yan]Computer Science Division, University of Aizu, Aizu-wakamatsu; Fukushima; 965-8580, Japan
  • [ 5 ] [Xu, Yang]Hangzhou Yingdong Technology Co. LTD., Hangzhou, China
  • [ 6 ] [Rajput, Asif]Department of Computer Science, Sukkur IBA University, Sukkur; 65200, Pakistan
  • [ 7 ] [Wang, Qing]Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing; 100084, China

通讯作者信息:

  • [akhtar, faheem]faculty of information technology, beijing university of technology, beijing; 100124, china;;[akhtar, faheem]department of computer science, sukkur iba university, sukkur; 65200, pakistan

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ISSN: 1876-1100

年份: 2020

卷: 551 LNEE

页码: 63-71

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 5

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:1387/3636907
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司