• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Feng (Li, Feng.) | Hu, Wenjin (Hu, Wenjin.) | Wu, Lifang (Wu, Lifang.) (学者:毋立芳) | Jian, Meng (Jian, Meng.) | Zhao, Kuan (Zhao, Kuan.) | Chen, Yukun (Chen, Yukun.)

收录:

EI

摘要:

Deep supervised hashing is popular for large scale image retrieval in recent years. Most existing deep hashing methods which preserved the relationship between Hamming distance and inner product to implement the distance metric of the binary codes. And they usually used sign function made the back propagation impractical. In this paper, we propose a novel deep supervised hashing method called discrete classification optimization hashing (DCOH). A new loss function is designed by introducing the constraints of cosine similarity and classification label. It can increase the similarity between the original image and the corresponding binary codes. Furthermore, the sigmoid function, which can iteratively approach the sign function, is used to resolve the problem of the back propagation impractical. The experimental results confirm the effectiveness of the proposed algorithm. © 2019 IEEE.

关键词:

Backpropagation Data handling Binary codes Iterative methods Image retrieval Hamming distance Image classification

作者机构:

  • [ 1 ] [Li, Feng]Beijing University of Technology, Beijing, China
  • [ 2 ] [Hu, Wenjin]Beijing University of Technology, Beijing, China
  • [ 3 ] [Wu, Lifang]Beijing University of Technology, Beijing, China
  • [ 4 ] [Jian, Meng]Beijing University of Technology, Beijing, China
  • [ 5 ] [Zhao, Kuan]Beijing University of Technology, Beijing, China
  • [ 6 ] [Chen, Yukun]Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2019

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:1474/3893678
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司