• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Yu (Wang, Yu.) | Li, Tong (Li, Tong.) | Geng, Congkai (Geng, Congkai.) | Wang, Yihan (Wang, Yihan.)

收录:

EI Scopus

摘要:

As education is taking an increasingly significant role in society today, efficient and precise evaluation of student learning effect is calling for more attention. With recent advances of information technology, learning effect can now be evaluated via mining student’s learning process. This paper proposes an interactive student learning effect evaluation framework which focuses on in-process learning effect evaluation. In particular, our proposal analyzes students modeling assignment based on their operation records by using techniques of frequent sequential pattern mining, user behavior analysis, and feature engineering. In order to enable effective student learning evaluation and deliver practical value, we have developed a comprehensive online modeling platform to collect operation data of modelers and to support the corresponding analysis. We have carried out a case study, in which we applied our approach to a real dataset, consisting of student online modeling behavior data collected from 24 students majoring in computer science. The results of our analysis show that our approach can effectively and practically mine student modeling patterns and interpret their behaviors, contributing to assessment of their learning effect. © Springer Nature Switzerland AG 2019.

关键词:

Behavioral research Data mining Learning systems Students

作者机构:

  • [ 1 ] [Wang, Yu]Beijing University of Technology, Beijing, China
  • [ 2 ] [Li, Tong]Beijing University of Technology, Beijing, China
  • [ 3 ] [Geng, Congkai]Beijing University of Technology, Beijing, China
  • [ 4 ] [Wang, Yihan]Beijing University of Technology, Beijing, China

通讯作者信息:

  • [li, tong]beijing university of technology, beijing, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 1865-0929

年份: 2019

卷: 1051 CCIS

页码: 59-72

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:647/3574913
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司