• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Jiang, Tianpeng (Jiang, Tianpeng.) | Liu, Zhaoying (Liu, Zhaoying.) | Li, Yujian (Li, Yujian.)

收录:

EI

摘要:

Deep convolutional neural networks have been widely used for saliency detection. However, most of the previous works focus on the visible light image. In this paper, there are mainly two contributions. First, we propose a new architecture named Multilevel Up-sampling Network (MLUNet) for infrared (IR) ship object saliency detection. Specifically, the architecture of MLUNet is an Encoder-Decoder like network embedded with subtraction feature filtering module (SFFM). The encoder uses the DenseNet like architecture, and the decoder part use two upsampling methods, which are deconvolution and sub-pixel convolution. SFFM is a feature subtraction module which is in charge of feature filtering. In our proposed MLUNet, SFFM is embedded after each convolution and deconvolution block. Secondly, we construct an IR ship object image dataset for saliency detection. This dataset includes 3845 IR images and ground-truth images with different backgrounds and different objects. Experimental results show that our method outperforms the state-of-the-art methods in terms of regional evaluation measures. © 2019 Association for Computing Machinery.

关键词:

Convolution Convolutional neural networks Decoding Deep learning Deep neural networks Infrared imaging Network architecture Object detection Ships Signal encoding Signal receivers Signal sampling Video signal processing

作者机构:

  • [ 1 ] [Jiang, Tianpeng]Beijing University of Technology, Beijing, China
  • [ 2 ] [Liu, Zhaoying]Beijing University of Technology, Beijing, China
  • [ 3 ] [Li, Yujian]Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2019

页码: 63-68

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:638/3577299
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司