• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Chen, Jian (Chen, Jian.) | Wu, Jianying (Wu, Jianying.)

收录:

EI Scopus

摘要:

Dynamic adaptive streaming over HTTP (DASH) is the dominant technology of multimedia delivery over the Internet. In DASH system, adaptive bitrate (ABR) algorithms running on client-side video player are the key to improve user quality of experience (QoE). However, most existing ABR algorithms employ fixed control rules to make bitrate decisions based on throughput, playback buffer size, or a combination of the two. As a result, their performance in the complicated and fluctuant network environment is incompetent. In this paper, we propose QRL, a bitrate adaptation approach based on deep reinforcement learning. QRL uses double Q-Learning, an enhanced Q-Learning method. After training the neural network model, the algorithm can select proper bitrates for future video segments based on all the information collected by client during the video playback process. Simulation results show that QRL achieves better performance than other algorithms. © 2019 IOP Publishing Ltd. All rights reserved.

关键词:

Adaptive systems Data mining Deep learning HTTP Intelligent computing Learning systems Quality of service Reinforcement learning Signal processing User experience

作者机构:

  • [ 1 ] [Chen, Jian]Information Department, Beijing University of Technology, Beijing, China
  • [ 2 ] [Wu, Jianying]Information Department, Beijing University of Technology, Beijing, China

通讯作者信息:

  • [chen, jian]information department, beijing university of technology, beijing, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 1742-6588

年份: 2019

期: 2

卷: 1237

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:51/3601614
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司