• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ma, HaiBo (Ma, HaiBo.) | Li, Yue (Li, Yue.) | Li, Yang (Li, Yang.)

收录:

EI Scopus

摘要:

Named entity linking is a process of linking a given reference in a document to a knowledge base. In natural language processing, entity linking can enhance the computer's understanding of unstructured text data. Applying traditional entity linking methods, especially entity linking methods for person names and organization names, has its limitations. Similar vocabulary as an entity to be linked is difficult to make full use of its contextual semantic information for ambiguity elimination. This paper makes full use of the entity's category attribute and the semantic information contained in the context to design an entity linking method based on entity category and semantic word embedding. First, Training text classification model based on corpus to obtain entity attributes. Then the semantic feature is extracted by the word vector template to perform entity disambiguation through the semantic classification model. Finally, the results of the entity linking are predicted by means of model ensemble. Experiments show that the accuracy of the method after fusion on the entity linking dataset has improved. © 2019 Published under licence by IOP Publishing Ltd.

关键词:

Classification (of information) Data mining Embeddings Knowledge based systems Natural language processing systems Semantics Text processing

作者机构:

  • [ 1 ] [Ma, HaiBo]Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Li, Yue]Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Li, Yang]Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 1742-6588

年份: 2019

期: 1

卷: 1284

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:187/3605537
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司