• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhu, Zhongyang (Zhu, Zhongyang.) | Sun, Guangmin (Sun, Guangmin.) (学者:孙光民) | He, Cunfu (He, Cunfu.) (学者:何存富) | Liu, Anqi (Liu, Anqi.)

收录:

EI Scopus

摘要:

Surface-hardened steels are widely used in many industrial components, such as cam and gears. Surface-hardness (SH) prediction plays an important role in assessing the quality of the surface-hardened steel. In this paper, an intelligent method for automatic SH prediction model establishment is proposed. The proposed intelligent approach involves three key steps. Firstly, hysteresis loops (HLs) are measured from the prepared surface-hardened steel rods with different SHs by a sensor. Secondly, a binary particle swarm optimization (BPSO) feature selection is applied to automatically select optimal feature subset from the measured HLs signal. Finally, a single-layer feedforward neural network (FNN) model is utilized to bridge the relationship between the selected features and SH. The experimental results show that the intelligent method can automatically establish SH prediction model. The optimal feature subset based single-layer FNN model can accurately predict SHs in surface-hardened steel rods with a prediction error of 0.298 %, indicating that the intelligent method can be integrated in an industrial robot for SH prediction in surface-hardened steel rod. © 2019 IEEE.

关键词:

Agricultural robots Connecting rods Feedforward neural networks Forecasting Hardening Hardness Intelligent robots Multilayer neural networks Network layers Neural networks Particle swarm optimization (PSO) Predictive analytics Robotics

作者机构:

  • [ 1 ] [Zhu, Zhongyang]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 2 ] [Sun, Guangmin]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 3 ] [He, Cunfu]College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing, China
  • [ 4 ] [Liu, Anqi]Faculty of Information Technology, Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2019

页码: 122-126

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:64/3604756
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司