• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Guo, Yiliang (Guo, Yiliang.) | Fan, Qingwu (Fan, Qingwu.) | Liu, Xudong (Liu, Xudong.)

收录:

EI

摘要:

Aiming at the large amount of data and complex structure of the heating pipe network system, this paper studies the fault diagnosis method of heating pipe network leakage based on deep belief network. Firstly, using the theory of graph theory to establish the hydraulic calculation model of the leakage condition of the heating pipe network, then according to the pressure change value of the pressure monitoring point in the pipe network; the deep belief network is used to establish the fault diagnosis model of the heating pipe network leakage, and the feasibility of the method is verified by experiments. The experimental results show that the proposed method has higher accuracy for the prediction of leakage pipe segments, and is superior to BP (Back Propagation Neural Network) neural network and support vector machine traditional fault diagnosis method. © 2019 IEEE.

关键词:

Backpropagation Heating Graph theory Neural networks Fault detection Failure analysis Support vector machines

作者机构:

  • [ 1 ] [Guo, Yiliang]Information Department, Beijing University of Technology, Beijing, China
  • [ 2 ] [Fan, Qingwu]Information Department, Beijing University of Technology, Beijing, China
  • [ 3 ] [Liu, Xudong]Information Department, Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2019

页码: 303-304

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 6

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:1552/4284201
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司