• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yang, Zhenning (Yang, Zhenning.) | He, Jingsha (He, Jingsha.) (学者:何泾沙) | He, Siyuan (He, Siyuan.)

收录:

EI Scopus

摘要:

The collaborative filtering algorithm (CF) is one of the most important algorithms in the recommendation system. Recently, the use of neural word embedding methods to learn the latent representation of words has become a mature method in the field of natural language processing (NLP). Inspired by the SGNS algorithm in the NLP field, we propose f-item2vec as a new method to learn the latent representation in item vector space, and based on this vector to calculate the similarity between items. In addition, according to the forgetting process, we propose a new user preference model to accurately identify the user's short-term preferences and long-term preferences. The experimental results show that the proposed method is effective and superior to the traditional algorithm in predicting the score and generating the recommendation list. © 2019 IEEE.

关键词:

Embeddings Vector spaces Recommender systems Natural language processing systems Artificial intelligence Collaborative filtering

作者机构:

  • [ 1 ] [Yang, Zhenning]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 2 ] [He, Jingsha]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 3 ] [He, Siyuan]Beijing Advanced Innovation Center for Future Internet Technology, Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2019

页码: 1606-1610

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 13

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:173/3918169
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司