• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhu, Bao (Zhu, Bao.) | Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞)

收录:

EI

摘要:

Process modeling plays a very important role in process system engineering. However, it is more and more difficult to develop an accurate model for a complex chemical process due to the highly nonlinear and complicated process data. For the purpose of handling this problem, an improved functional link learning machine using singular value decomposition (SVD-FLLM) is presented to develop accurate models for complex chemical processes. In the proposed SVD-FLLM model, singular value decomposition is adopted to reduce the expanded variable dimension. Then, the least square algorithm is used to build a regression model between the reduced outputs and the expected vectors. For the sake of validating the testing effectiveness of the proposed SVD-FLLM method, a UCI dataset named Airfoil Self-Noise is first selected. Then the proposed SVD-FLLM is used to develop a model for an actual complex chemical system. Simulation results indicate that, compared the traditional functional link neural network (FLNN), the improved SVD-FLLM can achieve higher accuracy and faster convergence. © 2019 IEEE.

关键词:

作者机构:

  • [ 1 ] [Zhu, Bao]Beijing University of Technology, Information Department, Beijing, China
  • [ 2 ] [Qiao, Junfei]Beijing University of Technology, Information Department, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2019

页码: 2560-2564

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:1023/2985960
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司