• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Fang, Juan (Fang, Juan.) (学者:方娟) | Zong, Huan (Zong, Huan.) | Zhao, Haoyan (Zhao, Haoyan.)

收录:

EI Scopus

摘要:

Heterogeneous multi-core processors have become the forefront of processor development due to their advantages in system throughput and execution efficiency, but they also bring many new challenges to system design. The mapping of heterogeneous Network-on-Chip (NoC) is challenging. To solve this problem, this paper proposes a heterogeneous multi-core processor task mapping algorithm based on an improved genetic algorithm. By constructing a good initial population method to improve the initial population quality, a dual population genetic mechanism is used in the iteration process. The algorithm can make tasks more reasonably distributed to various network nodes, and has high efficiency for optimizing network power consumption on heterogeneous multi-cores. © 2019 Institute of Physics Publishing. All rights reserved.

关键词:

Network-on-chip Energy efficiency Genetic algorithms Conformal mapping Heterogeneous networks Iterative methods Artificial intelligence Servers

作者机构:

  • [ 1 ] [Fang, Juan]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Fang, Juan]Beijing Institute of Smart City, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Zong, Huan]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Zhao, Haoyan]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

  • 方娟

    [fang, juan]faculty of information technology, beijing university of technology, beijing; 100124, china;;[fang, juan]beijing institute of smart city, beijing university of technology, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 1757-8981

年份: 2019

期: 4

卷: 490

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 5

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:1121/3873966
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司