• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Fan, Qingwu (Fan, Qingwu.) | Chen, Guanghuang (Chen, Guanghuang.) | Zhou, Xingqi (Zhou, Xingqi.) | Li, Lanbo (Li, Lanbo.)

收录:

EI

摘要:

Image threshold segmentation based on entropy is classical method. The time cost of applying the two-dimensional maximum entropy and enumeration threshold segmentation method is unacceptable, so that the genetic algorithms is adopted to improve efficiency. Because of the premature convergence of traditional genetic algorithm, the performance of image threshold segmentation is constrained. We propose a 2-D maximum entropy threshold segmentation method based on the auxiliary individual oriented crossover genetic algorithm (AIOXGA) to improve the speed and success rate of image threshold segmentation. The introduction of the AIOX operator reduces the blindness of the genetic algorithm and improves the optimization efficiency. This method was compared with enumeration method, standard genetic algorithm and original oriented genetic algorithm(OGA) in image segmentation experiments. The results show that the performance of this method is better than that of traditional methods. © 2019 IEEE.

关键词:

Efficiency Genetic algorithms Image enhancement Image segmentation Maximum entropy methods

作者机构:

  • [ 1 ] [Fan, Qingwu]Information Department, Beijing University of Technology, Beijing, China
  • [ 2 ] [Chen, Guanghuang]Information Department, Beijing University of Technology, Beijing, China
  • [ 3 ] [Zhou, Xingqi]Information Department, Beijing University of Technology, Beijing, China
  • [ 4 ] [Li, Lanbo]Information Department, Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2019

页码: 411-416

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:897/3617909
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司