• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Dong, Ning (Dong, Ning.) | Li, Xiaoguang (Li, Xiaoguang.) | Li, Jiafeng (Li, Jiafeng.) | Zhuo, Li (Zhuo, Li.)

收录:

EI Scopus

摘要:

The limited resolution of cameras and the wide field of the video surveillance systems lead to low quality captured facial images and difficult to identify. Face super-resolution methods are proposed to enhance the resolution of facial images. However, it remains a challenging issue to restore discriminative features to identify a specific person in surveillance videos. An algorithm that helps face super-resolution and recognition with the aid of discriminative-attributes is proposed in this paper. We introduce discriminative-attributes for face recognition to recover discriminative features in the reconstructed facial images. Attributes with more discriminative power are selected to input the network together with the low-resolution face image. The experimental results of the LFW-a benchmark test show that our method achieves promising results in both subjective visual quality and face recognition accuracy. © Springer Nature Switzerland AG 2019.

关键词:

Benchmarking Computer vision Face recognition Image enhancement Image reconstruction Optical resolving power Security systems

作者机构:

  • [ 1 ] [Dong, Ning]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Dong, Ning]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Li, Xiaoguang]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Li, Xiaoguang]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 5 ] [Li, Jiafeng]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing; 100124, China
  • [ 6 ] [Li, Jiafeng]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 7 ] [Zhuo, Li]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing; 100124, China
  • [ 8 ] [Zhuo, Li]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

  • [li, xiaoguang]beijing key laboratory of computational intelligence and intelligent system, beijing university of technology, beijing; 100124, china;;[li, xiaoguang]faculty of information technology, beijing university of technology, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 0302-9743

年份: 2019

卷: 11858 LNCS

页码: 487-497

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:78/3270211
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司