• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Dou, Huijing (Dou, Huijing.) | Zhang, Wenqian (Zhang, Wenqian.) | Liang, Xiao (Liang, Xiao.)

收录:

EI

摘要:

Super Resolution Convolutional Neural Network (SRCNN) solves the problems of poor robustness and complex calculation of traditional image super-resolution reconstruction algorithm, but its training data set and the number of layers of neural network is relatively small, and the edge and texture detail information are not handled well. For the above problems, the Maxout activation function is adopted in this paper to avoid the problems encountered by traditional activation functions such as gradient disappearance or overflow. Then the combination of Maxout and Dropout can train large data set and deepen neural network. Experimental results show that, compared with the classical algorithm, the algorithm proposed in this paper can train a large amount of data, improve the quality of reconstructed images and the generalization ability of the network model, and can enhance the robustness of the model. © 2019 IEEE.

关键词:

Chemical activation Convolution Convolutional neural networks Deep learning Edge detection Image enhancement Image reconstruction Multilayer neural networks Network layers Optical resolving power Textures

作者机构:

  • [ 1 ] [Dou, Huijing]Beijing University of Technology, Department of Informatics, Beijing, China
  • [ 2 ] [Zhang, Wenqian]Beijing University of Technology, Department of Informatics, Beijing, China
  • [ 3 ] [Liang, Xiao]Beijing University of Technology, Department of Informatics, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2019

页码: 306-310

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:174/3610992
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司