• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Chen, Zhihui (Chen, Zhihui.) | Ji, Junzhong (Ji, Junzhong.) (学者:冀俊忠) | Liang, Yin (Liang, Yin.)

收录:

EI

摘要:

The dynamic nature of the brain functional connectivity (FC) is well accepted in recent years. However, most of the current FC classification methods are based on the static estimation of FC. In this paper, we propose a novel convolutional neural network with an element-wise filter for classifying dynamic functional connectivity (DFC-CNN). First, a DFC matrix is estimated to quantify the DFC. Then, taking the DFC matrix as input, the DFC-CNN model employs one-dimensional convolutional kernels to extract the high-level features of DFC. Moreover, an element-wise filter is specially designed for the DFC matrix, which further improves the classification performance. The experimental results on the autism brain imaging data exchange I (ABIDE I) indicate that the proposed model can distinguish subject groups more accurately, and also can be used to identify the abnormal brain regions. © 2019 IEEE.

关键词:

Bioinformatics Brain Brain mapping Convolution Convolutional neural networks Electronic data interchange

作者机构:

  • [ 1 ] [Chen, Zhihui]Beijing University of Technology, Faculty of Information Technology, Beijing, China
  • [ 2 ] [Ji, Junzhong]Beijing University of Technology, Faculty of Information Technology, Beijing, China
  • [ 3 ] [Liang, Yin]Beijing University of Technology, Faculty of Information Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2019

页码: 643-646

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 6

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:676/3579463
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司