• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Fu, Yuhao (Fu, Yuhao.) | Wang, Suyu (Wang, Suyu.) | Yang, Bin (Yang, Bin.) | Yu, Chen (Yu, Chen.)

收录:

EI

摘要:

In the field of video surveillance, the use of artificial intelligence to estimate crowd density in public places has been a popular study. In order to improve the accuracy of crowd density estimates, a multi-scale convolution neural network structure is proposed. And the feature fusion of different receptive field information is performed by using multi-column convolution network, and the hierarchical semantic information with different feature maps at different resolutions is merged to generate a crowd density map with higher quality. The experiment was tested on the Shanghaitech dataset, UCF-CC50 dataset, and WorldExpo'10 dataset with mean absolute error (MAE) and mean square error (MSE) as the evaluation criteria. The results show that the new network model reduce the value MAE and MSE, improving the accuracy of crowd density estimation. © 2019 IEEE.

关键词:

Agricultural robots Convolution Convolutional neural networks Mean square error Robotics Robots Security systems Semantics

作者机构:

  • [ 1 ] [Fu, Yuhao]Beijing University of Technology, Faculty of Information Technology, Beijing, China
  • [ 2 ] [Wang, Suyu]Beijing University of Technology, Beijing Engineering Research Center for IoT Software and Systems, Faculty of Information Technology, Beijing, China
  • [ 3 ] [Yang, Bin]Beijing University of Technology, Beijing Engineering Research Center for IoT Software and Systems, Faculty of Information Technology, Beijing, China
  • [ 4 ] [Yu, Chen]Beijing University of Technology, Beijing Engineering Research Center for IoT Software and Systems, Faculty of Information Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2019

页码: 1-6

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:758/3597435
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司