首页>成果

  • 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

[会议论文]

Research and Improvement of Single Image Super-Resolution Based on Generative Adversarial Network

分享
编辑 删除 报错

作者:

Zhang, Tianji (Zhang, Tianji.)

收录:

EI Scopus

摘要:

This paper proposes a new image super-resolution method based on Generative Adversarial Network (GAN). Firstly, the algorithm model includes generating model and discriminant model, generating model to generate high-resolution image, discriminating model to distinguish the image true or false, the original image is true, and the generated image is false. Using alternate training method, the generated model and discriminant model achieve Nash equilibrium, and finally generate high-quality image. Compared with previous super-resolution method based on generative adversarial network (SRGAN), the following changes have been made: modifying the network structure, removing the unnecessary batch normalization layer in the standard residual block, deepening the network layer number and improving the loss function. The experimental results show that compared with the traditional bicubic interpolation method and compared with SRGAN, the proposed algorithm improves the actual image effect, peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) in varying degrees. © 2019 IOP Publishing Ltd. All rights reserved.

关键词:

Intelligent computing Optical resolving power Signal to noise ratio Image enhancement Network layers

作者机构:

  • [ 1 ] [Zhang, Tianji]Department of Informatics, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

  • [zhang, tianji]department of informatics, beijing university of technology, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关文章:

来源 :

ISSN: 1742-6588

年份: 2019

期: 3

卷: 1237

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 1

近30日浏览量: 0

归属院系:

在线人数/总访问数:252/4539588
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司