• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Jia, Yafang (Jia, Yafang.) | Lin, Shaofu (Lin, Shaofu.)

收录:

EI Scopus

摘要:

The fine-grained affective analysis of product reviews is a fine-grained mining of the content of reviews, which has important research significance. The explicit attribute-viewpoint extraction is one of its key research issues. Due to the complex structure and colloquial features of online product reviews, traditional models are not ideal for the extraction of explicit attribute-views pairs. To solve this problem, this paper proposes an extraction method based on deep learning and integrating positional relationship information. By using the Bi-directional Long Short-Term Memory Network to overcome the problem of long distance dependence, the author makes full use of the context, combines the attention mechanism to reduce the noise weight of sentence-level informal text, and integrates the feature of position relation to enrich the feature information. The experimental results show that compared with other models, the network model proposed in this paper has improved the call rate and F1 value. © 2019 Published under licence by IOP Publishing Ltd.

关键词:

Extraction Deep learning

作者机构:

  • [ 1 ] [Jia, Yafang]College of Software, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Lin, Shaofu]College of Software, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Lin, Shaofu]Beijing Advanced Innovation Center for Future Internet Technology, Beijing; 100124, China
  • [ 4 ] [Lin, Shaofu]Beijing Institute of Smart City, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 1742-6588

年份: 2019

期: 5

卷: 1213

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:1118/4279785
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司