收录:
摘要:
Diabetic retinopathy (DR) is one of the complications of diabetes mellitus, which is an important manifestation of diabetic microangiopathy and major cause of vision loss in middle-aged and elderly people worldwide. Establishing a risk prediction model for diabetic retinopathy can discover high-risk groups and early warn diabetic retinopathy, which can effectively reduce the medical cost of diabetes. The experimental data was derived from the electronic medical records of a tertiary hospital of Beijing from 2013 to 2017, including 29 inspection indicators. In this study, we compared the predictive models of type 2 diabetes mellitus complicated with retinopathy, and finally selected the random forest method to construct the risk prediction model. The weights of each index are analyzed by linear regression algorithm, the combination of inspection indicators with the highest accuracy is selected, and the random forest model is optimized to improve the accuracy of the classification prediction model, accuracy increased by 3.7264%. The predictive model provides a basis for early diagnosis of diabetic retina and optimization of the diagnostic process. © 2019, Springer Nature Switzerland AG.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
ISSN: 0302-9743
年份: 2019
卷: 11976 LNAI
页码: 233-243
语种: 英文
归属院系: