• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Tao, Yang (Tao, Yang.) | Cui, Zhu (Cui, Zhu.) | Jiazhe, Zhang (Jiazhe, Zhang.)

收录:

EI Scopus

摘要:

Keyword extraction is a basic text retrieval technique in natural language processing, which can highly summarize text content and reflect the author's writing purposes. It plays an important role in document retrieval, text classification and data mining. In this paper, we propose a TextRank algorithm based on PMI (pointwise mutual information) weighting for extracting keywords from documents. The initial transition probability of the candidate words is constructed by calculating the PMI between vocabularies, which is used for iterative calculation of the vocabulary graph model within TextRank and keyword extraction. Taking into account the mutual information between the vocabulary in the document set, the word relationship in the single document is corrected, which is helpful to improve the accuracy of document keyword extraction. Experiments show that our method achieves better performance in extracting keywords in large-scale text data. © 2019 IEEE.

关键词:

Classification (of information) Data mining Extraction Information retrieval Information retrieval systems Iterative methods Natural language processing systems Text mining Text processing

作者机构:

  • [ 1 ] [Tao, Yang]College of Computer Science and Technology, Beijing University of Technology, Beijing, China
  • [ 2 ] [Cui, Zhu]College of Computer Science and Technology, Beijing University of Technology, Beijing, China
  • [ 3 ] [Jiazhe, Zhang]College of Computer Science and Technology, Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2019

页码: 5-9

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 13

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:157/3605682
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司