• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Lin, Shaofu (Lin, Shaofu.) | Ji, Wei (Ji, Wei.) | Pei, Jiangtao (Pei, Jiangtao.)

收录:

EI Scopus

摘要:

This paper studies the optimal feature subset screening for diabetes according to the health check data based on the random forest algorithm. The paper takes the real physical examination records of the same batch of people in a local health check-up center from 2010 to 2015 as the data source, and evaluates the importance of the features. The preliminary fitting finds that 28 features have an impact on the response results. The AUC performance of the classifier finally selects the optimal feature subset containing 9 characteristic variables in multiple feature subsets, which provides scientific evidence and decision support for medical expert's prediction intervention, clinical diagnosis, treatment plan determination and medical research on diabetes. © 2019 IOP Publishing Ltd. All rights reserved.

关键词:

Clinical research Data mining Decision support systems Decision trees Diagnosis Intelligent computing Random forests Signal processing

作者机构:

  • [ 1 ] [Lin, Shaofu]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Ji, Wei]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Pei, Jiangtao]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

  • [lin, shaofu]faculty of information technology, beijing university of technology, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 1742-6588

年份: 2019

期: 2

卷: 1237

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:673/3622486
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司