• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yuan, Yongtao (Yuan, Yongtao.) | Zhang, Xiaojun (Zhang, Xiaojun.) | Miao, Yang (Miao, Yang.)

收录:

EI

摘要:

Cavitations which is one of the worst faults forseawater hydraulic pump should be diagnosed and prognosed. In this paper, a improved Hilbert-Huang Transform ( HHT) is proposed to extract faults feature of seawater hydraulic pump's vibration signal; vibration signal is decomposed into several Intrinsic Mode Function (IMF) based on Ensemble Empirical Mode Decomposition ( EEMD ).Then IMFincluding the features of failure are extracted into fault feature vectors by HHT. Prognosis model is established based on support vector machine (SVM) method. Fault feature vectors are acted as inputs of the model to predict cavitations of seawater hydraulic pump. It is shown that the method of this paper is effective. © 2019 IEEE.

关键词:

Cavitation Fluid Power Mathematical transformations Pumps Seawater Signal processing Support vector machines

作者机构:

  • [ 1 ] [Yuan, Yongtao]Beijing University of Technology, Beijing Key Laboratory of Advanced Manufacturing Technology, Beijing, China
  • [ 2 ] [Zhang, Xiaojun]Beijing University of Technology, Beijing Key Laboratory of Advanced Manufacturing Technology, Beijing, China
  • [ 3 ] [Miao, Yang]Beijing University of Technology, Beijing Key Laboratory of Advanced Manufacturing Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

年份: 2019

页码: 426-431

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:64/3267209
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司