• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Mahama, Halid (Mahama, Halid.) | Chen, Yangzhou (Chen, Yangzhou.) (学者:陈阳舟)

收录:

EI

摘要:

The benefits of both homogeneous and heterogeneous platooning of automated vehicles have been reported by many studies. One commonality among such studies has been that platooning does provide a positive impact on traffic dynamics through increased average speeds, flow and capacity. Also due to platooning, fuel consumption is reduced and hence positively impacts the environment through reduced emissions. This is even more so when the percentage of automated vehicles is significantly higher than non-automated vehicles. While obvious that today's and near future highways will have automated and non-automated vehicles coexisting, research points towards homogeneity in order to fully realize the benefits of platooning. Research also indicates that when platooning allows maneuvers such as merging and splitting of platoons, these maneuvers present reduced benefits in traffic dynamics and consequently its impact on the environment. In light of these observations, this study presents a highway architecture that implements and controls lane and destination based fixed-routed platoons of automated vehicles with minimal lane changes. The study demonstrates that confining platoons to vehicles of same off-ramp destinations reduces the need for lane changes to a predetermined number, allows for more stable and longer strings of vehicle platoons of up to 24 vehicles per platoon. When compared to conventional traffic, the model presented shows between 135% and 156% increase in average speeds, 70% reduction in travel times and between 39% and 43.5% increase in highway throughput. The open-source traffic simulator, Simulation of Urban Mobility (SUMO) is used to simulate the model presented in this study. © 2019 IEEE.

关键词:

Automation Military applications Travel time Vehicle actuated signals Vehicles

作者机构:

  • [ 1 ] [Mahama, Halid]College of Artificial Intelligence and Automation, Beijing University of Technology, Beijing, China
  • [ 2 ] [Chen, Yangzhou]College of Artificial Intelligence and Automation, Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2019

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:1210/2904066
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司