• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Meng, Hao (Meng, Hao.) | Chao, Daichong (Chao, Daichong.) | Guo, Qianying (Guo, Qianying.)

收录:

EI Scopus

摘要:

Mobile-edge computing(MEC) is deemed to a promising paradigm. By deploying high-performance servers on the mobile access network side, MEC can provide auxiliary computing power for mobile devices, greatly reducing the computing pressure of mobile devices and improving the quality of the computing experience. In this paper, we consider the offloading problem of tasks in single-user MEC system. In order to minimize the mean energy consumption of mobile devices and the mean slowdown of tasks in the queue, we propose a deep reinforcement learning(DRL) based task offloading algorithm, and a new reward function is designed, which can guide the algorithm to optimize the trade-off between mean energy consumption and mean slowdown. The simulation results show that the deep reinforcement learning based algorithm outperforms the baseline algorithms. © 2019 Association for Computing Machinery.

关键词:

Deep learning Economic and social effects Edge computing Energy utilization Green computing Learning algorithms Reinforcement learning

作者机构:

  • [ 1 ] [Meng, Hao]Beijing Advanced Innovation Center for Future Internet Technology, Beijing University of Technology, Beijing, China
  • [ 2 ] [Chao, Daichong]Beijing Advanced Innovation Center for Future Internet Technology, Beijing University of Technology, Beijing, China
  • [ 3 ] [Guo, Qianying]Beijing Advanced Innovation Center for Future Internet Technology, Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

年份: 2019

页码: 90-94

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 23

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:170/3608174
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司