• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xun, Guangxu (Xun, Guangxu.) | Jha, Kishlay (Jha, Kishlay.) | Yuan, Ye (Yuan, Ye.) | Zhang, Aidong (Zhang, Aidong.)

收录:

EI Scopus

摘要:

Discovering latent topics from biomedical documents has become a pivotal task in many biomedical text mining applications. Medical Subject Headings (MeSH) terms, which are curated by human experts, provide highly precise keyword representations for biomedical documents. However, the performance of conventional topic models on MeSH documents is usually unsatisfying due to the limited length of individual MeSH documents. In this paper, we propose a novel topic model for MeSH documents using MeSH embeddings. The proposed topic model is able to overcome the lack of context information problem in MeSH documents by 1) exploiting the rich term-level co-occurrence patterns instead of the sparse document-level co-occurrence patterns, and 2) incorporating additional MeSH semantics in MeSH embeddings learned from a large external biomedical knowledge base. Experimental result on a real-world biomedical dataset shows the efficacy of the proposed model in discovering coherent topics from MeSH documents. © 2019 IEEE.

关键词:

Knowledge based systems Mesh generation Text mining Semantics Embeddings Medical informatics Natural language processing systems

作者机构:

  • [ 1 ] [Xun, Guangxu]University of Virginia, Charlottesville; VA, United States
  • [ 2 ] [Jha, Kishlay]University of Virginia, Charlottesville; VA, United States
  • [ 3 ] [Yuan, Ye]College of Information and Communication Engineering, Beijing University of Technology, Beijing, China
  • [ 4 ] [Zhang, Aidong]University of Virginia, Charlottesville; VA, United States

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2019

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 5

归属院系:

在线人数/总访问数:522/3894487
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司