• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Cheng (Zhang, Cheng.) | He, Jian (He, Jian.) | Wang, Weidong (Wang, Weidong.) | Yang, Shengqi (Yang, Shengqi.) | Zhang, Yuqing (Zhang, Yuqing.)

收录:

EI Scopus

摘要:

Atherosclerotic plaques, the leading cause of heart attack, can be characterized from intravascular optical coherence tomography (IV-OCT) images by doctors. Since lipid accumulation is an important indication of atherosclerotic plaque, we introduced a new convolutional neural network, called Single Shot Plaque Marking Network (SSPM), to develop an automated method that highlights the extent of lipid plaques from IV-OCT images at real-time, which then would help doctors easily find the vulnerable plaque. Compared with previous available methods, our method is capable of marking the suspicious lipid plaque areas in real-time with better time-efficiency and competitive accuracy during the diagnosis. SSPM is tested on IV-OCT human coronary artery imaging dataset, and the result shows that our method is able to mark suspicious lipid-plaque areas at 91 fps on GPU, or 16 fps on CPU, with an accuracy of 87%. 2019, Springer Nature Singapore Pte Ltd.

关键词:

Biology Cognitive systems Computational efficiency Convolutional neural networks Efficiency Neural networks Optical tomography Signal processing

作者机构:

  • [ 1 ] [Zhang, Cheng]Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [He, Jian]Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Wang, Weidong]Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Yang, Shengqi]Beijing University of Technology, Beijing; 100124, China
  • [ 5 ] [Zhang, Yuqing]National Center for Cardiovascular Diseases, Beijing; 100037, China

通讯作者信息:

  • [he, jian]beijing university of technology, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ISSN: 1865-0929

年份: 2019

卷: 1005

页码: 99-111

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:444/3652726
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司