• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Qijun (Zhang, Qijun.) | Na, Weicong (Na, Weicong.) | Li, Ming (Li, Ming.) | Ding, Qing (Ding, Qing.) | Wu, Guangsheng (Wu, Guangsheng.)

收录:

EI

摘要:

Neural network based techniques are useful in representing the behavior of electronic devices for nonlinear circuit simulation. As new technologies evolve, new behavior need to be captured for modeling and simulation. Often, measurement data from the devices are used to train a neural model to capture these behaviors. However, during nonlinear simulation, the nonlinear equations derived from the electronic circuits need to be solved iteratively, and the iterative variables may explore outside the training data range, potentially causing convergence failure. This paper addresses such problem by describing an extrapolation technique that extrapolate the information smoothly beyond the training data range. To guarantee convergence of nonlinear simulation, the extrapolated model is made maximumly smooth while satisfying diverse tendencies of the model in multi-dimensional parameter space. The technique is demonstrated by a high-electron-mobility transistor modeling example and its use in harmonic-balance simulation, showing better convergence of nonlinear circuit simulation using extrapolated neural models over existing neural modeling methods. © 2019 IEEE.

关键词:

Circuit simulation Timing circuits Thermoelectric equipment Nonlinear network analysis Nonlinear equations Neural networks Iterative methods Extrapolation High electron mobility transistors

作者机构:

  • [ 1 ] [Zhang, Qijun]China Communication Microelectronics Technology Co Ltd, Shenzhen, China
  • [ 2 ] [Na, Weicong]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 3 ] [Li, Ming]China Communication Microelectronics Technology Co Ltd, Shenzhen, China
  • [ 4 ] [Ding, Qing]China Communication Microelectronics Technology Co Ltd, Shenzhen, China
  • [ 5 ] [Wu, Guangsheng]China Communication Microelectronics Technology Co Ltd, Shenzhen, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2019

页码: 1583-1588

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:127/3911141
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司