• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhu, Qun-Xiong (Zhu, Qun-Xiong.) | Zhang, Xiao-Han (Zhang, Xiao-Han.) | Gao, Huihui (Gao, Huihui.) | Geng, Zhi-Qiang (Geng, Zhi-Qiang.) | Han, Yongming (Han, Yongming.) | He, Yan-Lin (He, Yan-Lin.) | Xu, Yuan (Xu, Yuan.)

收录:

EI Scopus

摘要:

It takes many efforts to establish accurate soft sensor models because of the increasing complication of processes. For the sake of solving this problem, a novel multi-kernel extreme learning machine based on partial least square regression (PLSR) is proposed. In the proposed method, different kernel functions are used for mapping the space of process data to highly nonlinear space. The partial least square regression is adopted to obtain the relationship between the nonlinear space and output layer. To validate the performance of the proposed model, a case study using the High Density Polyethylene process is executed. Simulation results confirm the performance of the proposed model. © 2019 JSME.

关键词:

Control engineering Learning systems

作者机构:

  • [ 1 ] [Zhu, Qun-Xiong]College of Information Science and Technology, Beijing University of Chemical Technology, Beijing; 100029, China
  • [ 2 ] [Zhu, Qun-Xiong]Engineering Research Center of Intelligent PSE, Ministry of Education in China, Beijing; 100029, China
  • [ 3 ] [Zhang, Xiao-Han]College of Information Science and Technology, Beijing University of Chemical Technology, Beijing; 100029, China
  • [ 4 ] [Zhang, Xiao-Han]Engineering Research Center of Intelligent PSE, Ministry of Education in China, Beijing; 100029, China
  • [ 5 ] [Gao, Huihui]Faculty of Information Technology, Beijing University of Technology, China
  • [ 6 ] [Geng, Zhi-Qiang]College of Information Science and Technology, Beijing University of Chemical Technology, Beijing; 100029, China
  • [ 7 ] [Geng, Zhi-Qiang]Engineering Research Center of Intelligent PSE, Ministry of Education in China, Beijing; 100029, China
  • [ 8 ] [Han, Yongming]College of Information Science and Technology, Beijing University of Chemical Technology, Beijing; 100029, China
  • [ 9 ] [Han, Yongming]Engineering Research Center of Intelligent PSE, Ministry of Education in China, Beijing; 100029, China
  • [ 10 ] [He, Yan-Lin]College of Information Science and Technology, Beijing University of Chemical Technology, Beijing; 100029, China
  • [ 11 ] [He, Yan-Lin]Engineering Research Center of Intelligent PSE, Ministry of Education in China, Beijing; 100029, China
  • [ 12 ] [Xu, Yuan]College of Information Science and Technology, Beijing University of Chemical Technology, Beijing; 100029, China
  • [ 13 ] [Xu, Yuan]Engineering Research Center of Intelligent PSE, Ministry of Education in China, Beijing; 100029, China

通讯作者信息:

  • [he, yan-lin]engineering research center of intelligent pse, ministry of education in china, beijing; 100029, china;;[he, yan-lin]college of information science and technology, beijing university of chemical technology, beijing; 100029, china

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

年份: 2019

页码: 829-832

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:273/3772069
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司