• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Gadosey, Pius Kwao (Gadosey, Pius Kwao.) | Li, Yujian (Li, Yujian.) | Yamak, Peter T. (Yamak, Peter T..)

收录:

EI

摘要:

With the influx of several kinds of mobile electronic devices alongside the increasing popularity of deep learning networks in performing computer vision tasks, it is natural that demands for delivering them on smaller devices will increase. The authors of this paper review and experiment with compact models (MobileNet V1 and V2, ShuffleNet V1 and V2, FD-MobileNet)) and selected methods of pruning and quantization of popular Convolutional Neural Network (CNN) through transfer learning tasks. They further propose a hybrid technique of per layer pruning and quantization called Pruned Sparse Binary-Weight Network (PSBWN). The performance of these four techniques are evaluated on image classification tasks on the Caltech–UCSD Birds 200, Oxford Flowers 102 and CALTECH256 which are all publicly available benchmark datasets with focus on the trade-offs among the number of Floating Point Operations (FLOPS), model sizes, training and inference times against accuracy using the same computation resources. © 2019 Association for Computing Machinery.

关键词:

Benchmarking Classification (of information) Cloud computing Convolutional neural networks Deep learning Digital arithmetic Economic and social effects Learning systems Neural networks Transfer learning

作者机构:

  • [ 1 ] [Gadosey, Pius Kwao]Computer Science and Technology, Beijing University of Technology, Beijing, China
  • [ 2 ] [Li, Yujian]School of Artificial Intelligence, Guilin University of Electronic Technology, Guilin, Guangxi, China
  • [ 3 ] [Yamak, Peter T.]Computer Science and Technology, Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2019

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:64/3600889
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司