• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Q.J. (Zhang, Q.J..) | Na, W. (Na, W..) | Li, M. (Li, M..) (学者:栗觅) | Ding, Q. (Ding, Q..) | Wu, G. (Wu, G..)

收录:

EI

摘要:

This paper describes artificial neural network approaches to convert the conventionally expensive process of electronic modelling into an automated model generation process. Artificial neural networks are trained using machine learning algorithm to learn the electronic behaviour, and the trained neural network becomes a model to help predict the electronic device behaviour. The automated model generation algorithm performs adaptive data sampling to determine the amount and the distribution of training data needed to train neural networks. The algorithm also determines the number of hidden neurons needed to achieve a compact and accurate model. Also incorporated into the automated model generation method is an efficient interpolation approach to make the process much faster. The objective of the described method is to generate a compact neural-network based model with better accuracy and in less time than conventional approach. Examples of automated modeling of radio-frequency and microwave filters used in wireless electronic systems are described showing the advantage of this technique. © 2019 IOP Publishing Ltd.

关键词:

Automation Learning algorithms Machine learning Microwave filters Neural networks Thermoelectric equipment

作者机构:

  • [ 1 ] [Zhang, Q.J.]China Communication Microelectronics Technology Co Ltd, Shenzhen, China
  • [ 2 ] [Na, W.]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 3 ] [Li, M.]China Communication Microelectronics Technology Co Ltd, Shenzhen, China
  • [ 4 ] [Ding, Q.]China Communication Microelectronics Technology Co Ltd, Shenzhen, China
  • [ 5 ] [Wu, G.]China Communication Microelectronics Technology Co Ltd, Shenzhen, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 1742-6588

年份: 2019

期: 1

卷: 1419

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:208/3605597
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司