• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yang, Cuili (Yang, Cuili.) | Zhu, Xinxin (Zhu, Xinxin.) | Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞)

收录:

EI Scopus

摘要:

Recently, the polynomial echo state network (PESN) has been proposed to incorporate the high order information of input features. However, there are some redundant inputs in PESN, which results in high computational cost. To solve this problem, a backward learning algorithm is designed for PESN, which is denoted as BL-PESN for short. The criterion for input features removing is designed to prune the insignificant input features one by one. The simulation results illustrate that the proposed approach has better prediction accuracy and less testing time than other ESNs. © 2019, ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering.

关键词:

Polynomials Learning algorithms Machine learning Genetic algorithms

作者机构:

  • [ 1 ] [Yang, Cuili]Faculty of Information Technology, Beijing University of Technology Beijing Key Laboratory of Computational Intelligence and Intelligence System, Beijing; 100124, China
  • [ 2 ] [Zhu, Xinxin]Faculty of Information Technology, Beijing University of Technology Beijing Key Laboratory of Computational Intelligence and Intelligence System, Beijing; 100124, China
  • [ 3 ] [Qiao, Junfei]Faculty of Information Technology, Beijing University of Technology Beijing Key Laboratory of Computational Intelligence and Intelligence System, Beijing; 100124, China

通讯作者信息:

  • [yang, cuili]faculty of information technology, beijing university of technology beijing key laboratory of computational intelligence and intelligence system, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 1867-8211

年份: 2019

卷: 294 LNCIST

页码: 501-509

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:167/4509105
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司