• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Chu, Minghui (Chu, Minghui.) | Li, Wenjing (Li, Wenjing.) | Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞)

收录:

EI Scopus

摘要:

Aiming at the question that the effluent biochemical oxygen demand (BOD) in sewage treatment is difficult to measure accurately in real time, a soft-measurement model of recursive radial basis function (RRBF) neural network based on PSO algorithm (PSO-RRBF) is proposed to predict the effluent BOD. Firstly, the PSO algorithm is put forward to determine not only the input variables but also the structure of the RRBF effectively. Secondly, the gradient descent method is used to adjust the weights, center and width. Finally, the soft-measurement model is applied to the actual sewage treatment process. The experimental results show that the soft-measurement model has a more compact structure and its accuracy is improved compared with other models. © 2019 Technical Committee on Control Theory, Chinese Association of Automation.

关键词:

作者机构:

  • [ 1 ] [Chu, Minghui]Faculty of Information Technology, Beijing University of Technology, Beijing; 100024, China
  • [ 2 ] [Chu, Minghui]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 3 ] [Li, Wenjing]Faculty of Information Technology, Beijing University of Technology, Beijing; 100024, China
  • [ 4 ] [Li, Wenjing]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 5 ] [Qiao, Junfei]Faculty of Information Technology, Beijing University of Technology, Beijing; 100024, China
  • [ 6 ] [Qiao, Junfei]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China

通讯作者信息:

  • [li, wenjing]faculty of information technology, beijing university of technology, beijing; 100024, china;;[li, wenjing]beijing key laboratory of computational intelligence and intelligent system, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 1934-1768

年份: 2019

卷: 2019-July

页码: 1593-1597

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:460/3894423
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司