• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Tingting (Li, Tingting.) | Shi, Yunhui (Shi, Yunhui.) (学者:施云惠) | Sun, Xiaoyan (Sun, Xiaoyan.) | Wang, Jin (Wang, Jin.) | Yin, Baocai (Yin, Baocai.) (学者:尹宝才)

收录:

EI

摘要:

Unlike images, the topology similarity among meshes can hardly be handled with traditional signal processing tools because of their irregular structures. Geometry image parameterization provides a way to represent 3D meshes in the form of 2D geometry and normal images. However, most existing methods, including the CoGAN are not suitable for such unnatural images corresponding to meshes. To solve this problem, we propose a Prediction Generative Adversarial Network (PGAN) to learn a joint distribution of geometry and normal images for generating meshes. Particularly, we enforce a prediction constraint on the geometry GAN and normal GAN in our PGAN utilizing the inherent relationship between the geometry and normal. The experimental results on face mesh generation indicate that our PGAN outperforms in generating realistic face models with rich facial attributes such as facial expression and retaining the geometry of the faces. © 2019 IEEE.

关键词:

Forecasting Geometry Visual communication Parameterization Image processing Mesh generation

作者机构:

  • [ 1 ] [Li, Tingting]Beijing University of Technology, Beijing Key Laboratory of Multimedia and Intelligent Software Technology, Beijing; 100124, China
  • [ 2 ] [Shi, Yunhui]Beijing University of Technology, Beijing Key Laboratory of Multimedia and Intelligent Software Technology, Beijing; 100124, China
  • [ 3 ] [Sun, Xiaoyan]Microsoft Research Asia, Beijing, China
  • [ 4 ] [Wang, Jin]Beijing University of Technology, Beijing Key Laboratory of Multimedia and Intelligent Software Technology, Beijing; 100124, China
  • [ 5 ] [Yin, Baocai]Dalian University of Technology, Faculty of Electronic Information and Electrical Engineering, Dalian, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2019

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:390/4284933
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司