• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Lin, Jinzhong (Lin, Jinzhong.) | Pang, Junbiao (Pang, Junbiao.) (学者:庞俊彪) | Su, Li (Su, Li.) | Liu, Yugui (Liu, Yugui.) | Huang, Qingming (Huang, Qingming.) (学者:黄庆明)

收录:

CPCI-S EI Scopus

摘要:

Organizing webpages into hot topics is one of the key steps to understand the trends from multi-modal web data. To handle this pressing problem, Poisson Deconvolution (PD), a state-of-the-art method, recently is proposed to rank the interestingness of web topics on a similarity graph. Nevertheless, in terms of scalability, PD optimized by expectation-maximization is not sufficiently efficient for a large-scale data set. In this paper, we develop a Stochastic Poisson Deconvolution (SPD) to deal with the large-scale web data sets. Experiments demonstrate the efficacy of the proposed approach in comparison with the state-of-the-art methods on two public data sets and one large-scale synthetic data set. © 2019, Springer Nature Switzerland AG.

关键词:

Maximum principle Stochastic systems

作者机构:

  • [ 1 ] [Lin, Jinzhong]School of Computer and Control Engineering, University of Chinese Academy of Sciences, Beijing, China
  • [ 2 ] [Pang, Junbiao]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 3 ] [Su, Li]School of Computer and Control Engineering, University of Chinese Academy of Sciences, Beijing, China
  • [ 4 ] [Liu, Yugui]School of Computer and Control Engineering, University of Chinese Academy of Sciences, Beijing, China
  • [ 5 ] [Huang, Qingming]School of Computer and Control Engineering, University of Chinese Academy of Sciences, Beijing, China
  • [ 6 ] [Huang, Qingming]Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

通讯作者信息:

  • 黄庆明

    [huang, qingming]school of computer and control engineering, university of chinese academy of sciences, beijing, china;;[huang, qingming]institute of computing technology, chinese academy of sciences, beijing, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 0302-9743

年份: 2019

卷: 11295 LNCS

页码: 590-602

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:299/4611333
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司