• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ren, Kun (Ren, Kun.) | Meng, Lisha (Meng, Lisha.) | Fan, Chunqi (Fan, Chunqi.) | Wang, Pu (Wang, Pu.)

收录:

EI Scopus

摘要:

The generative adversarial network (GAN) provide a new way for semantic image inpainting problem. The missing semantic information can be predicted by generating an image with similar distribution of corrupted image based on GAN. In this paper, we propose a high vision quality semantic inpainting algorithm based on a LS-DCGAN. We discuss the optimization of GAN training and introduce the least squares loss function to solve the vanishing gradient problem of DCGAN. Based on a trained LS-DCGAN, we propose a new adversarial loss function for optimizing inpainting network input. Experiment on two datasets show that our algorithm is stable and effective, and have higher naturalness, validity and semantic similarity on visual experience than the state-of-the-art algorithms. © 2018 IEEE.

关键词:

Cloud computing Image processing Semantics

作者机构:

  • [ 1 ] [Ren, Kun]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Ren, Kun]Engineering Research Center of Digital Community, Ministry of Education, Beijing; 100124, China
  • [ 3 ] [Ren, Kun]Beijing Laboratory for Urban Mass Transit, Beijing; 100124, China
  • [ 4 ] [Meng, Lisha]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 5 ] [Meng, Lisha]Engineering Research Center of Digital Community, Ministry of Education, Beijing; 100124, China
  • [ 6 ] [Meng, Lisha]Beijing Laboratory for Urban Mass Transit, Beijing; 100124, China
  • [ 7 ] [Fan, Chunqi]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 8 ] [Fan, Chunqi]Engineering Research Center of Digital Community, Ministry of Education, Beijing; 100124, China
  • [ 9 ] [Fan, Chunqi]Beijing Laboratory for Urban Mass Transit, Beijing; 100124, China
  • [ 10 ] [Wang, Pu]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 11 ] [Wang, Pu]Engineering Research Center of Digital Community, Ministry of Education, Beijing; 100124, China
  • [ 12 ] [Wang, Pu]Beijing Laboratory for Urban Mass Transit, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2019

页码: 890-894

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:219/3608404
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司