• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yuan, Chunming (Yuan, Chunming.) | Xiu, Tian (Xiu, Tian.) | Lou, Tianyue (Lou, Tianyue.)

收录:

EI Scopus

摘要:

The accurate load forecasting is of great significance to power companies. In this paper, we proposed a probabilistic long-term load forecasting model based on stacked Long Short-Term Memory (LSTM).The data set is the load data of a power plant from 2005 to 2013.Firstly, data preprocessing is aimed to eliminate outliers and missing values, it can improve the accuracy of prediction. Secondly, we obtained the point prediction value with stacked LSTM, and the result shows that the proposed model performs better on prediction accuracy than other models, such as Support Vector Regression and Artificial neural network (BP). Finally, we proposed a probability density prediction method based on error statistics, comparing with point prediction method, it can provide more uncertain information for long-term load forecasting. © 2019 Association for Computing Machinery.

关键词:

Backpropagation Electric power plant loads Electric utilities Error statistics Forecasting Long short-term memory Support vector regression

作者机构:

  • [ 1 ] [Yuan, Chunming]Beijing Advanced Innovation Center for Future Internet Technology, Beijing University of Technology, Beijing, China
  • [ 2 ] [Xiu, Tian]Nari Group Corporation, State Grid Electric Power Research Institute, Nanjing, China
  • [ 3 ] [Lou, Tianyue]Nari Group Corporation, State Grid Electric Power Research Institute, Nanjing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2019

页码: 80-84

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 3

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:167/3603498
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司