收录:
摘要:
This paper contributes a new, real-world web image dataset for cross-media retrieval called FB5K. The proposed FB5K dataset contains the following attributes: (1) 5130 images crawled from Facebook; (2) images that are categorized according to users’ feelings; (3) images independent of text and language rather than using feelings for search. Furthermore, we propose a novel approach through the use of Optical Character Recognition (OCR) and explicit incorporation of high-level semantic information. We comprehensively compute the performance of four different subspace-learning methods and three modified versions of the Correspondence Auto Encoder (Corr-AE), alongside numerous text features and similarity measurements comparing Wikipedia, Flickr30k and FB5K. To check the characteristics of FB5K, we propose a semantic-based cross-media retrieval method. To accomplish cross-media retrieval, we introduced a new similarity measurement in the embedded space, which significantly improved system performance compared with the conventional Euclidean distance. Our experimental results demonstrated the efficiency of the proposed retrieval method on three different public datasets. © 2019, Springer Nature Switzerland AG.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
ISSN: 0302-9743
年份: 2019
卷: 11607 LNAI
页码: 65-76
语种: 英文
归属院系: