• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Song, Jia (Song, Jia.) | Guo, Hang (Guo, Hang.) (学者:郭航) | Ye, Fang (Ye, Fang.) | Ma, Chong Fang (Ma, Chong Fang.)

收录:

Scopus SCIE

摘要:

In this study, the cell performance of nonuniform depth and conventional straight channel in a unitized regenerative fuel cell (URFC) is compared. Various shapes of oxygen-side channel cases are also proposed. Several parameters, such as the distribution of reactants and products and current density and powers in fuel cell (FC) and electrolytic cell (EC) modes, are investigated. A steady-state model of two-dimensional, two-phase, nonisothermal, and coupled electrochemical reaction is developed. Five oxygen-side channel shapes are also designed, in which the depth along the flow direction is narrowed. Result shows that narrowing the average channel depth can promote and guide the reactant transfer to the catalyst layer and avoid the blocking of the production. Thus, in comparison with the conventional channel, the cell performances of nonuniform depth and shallow straight channel cases are improved in both modes. In addition, with the decrease of average channel depth, the temperature uniformity gets better, which is also conductive to the improvement of cell performance. Furthermore, in FC mode at low voltage and EC mode, the cell net power basically increases with the decrease of the average channel depth ratio. And when the average channel depth is the same, the net power of straight channel is always lower than nonuniform depth case. This study introduces the round-trip energy efficiency as an evaluation indicator of URFC. This efficiency can be increased by improving the cell performance of both modes, especially at high current density.

关键词:

nonuniform depth channel cell performance round-trip energy efficiency net power unitized regenerative fuel cell

作者机构:

  • [ 1 ] [Song, Jia]Beijing Univ Technol, Coll Environm & Energy Engn, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 2 ] [Guo, Hang]Beijing Univ Technol, Coll Environm & Energy Engn, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 3 ] [Ye, Fang]Beijing Univ Technol, Coll Environm & Energy Engn, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 4 ] [Ma, Chong Fang]Beijing Univ Technol, Coll Environm & Energy Engn, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China

通讯作者信息:

  • 郭航

    [Guo, Hang]Beijing Univ Technol, Coll Environm & Energy Engn, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

INTERNATIONAL JOURNAL OF ENERGY RESEARCH

ISSN: 0363-907X

年份: 2019

期: 7

卷: 43

页码: 2940-2962

4 . 6 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:136

被引次数:

WoS核心集被引频次: 30

SCOPUS被引频次: 35

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 6

在线人数/总访问数:853/4284688
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司