• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Sun, Wei (Sun, Wei.) (学者:孙威) | Gu, Ke (Gu, Ke.) (学者:顾锞) | Luo, Weike (Luo, Weike.) | Min, Xiongkuo (Min, Xiongkuo.) | Zhai, Guangtao (Zhai, Guangtao.) | Ma, Siwei (Ma, Siwei.) | Yang, Xiaokang (Yang, Xiaokang.)

收录:

EI Scopus

摘要:

In this paper, we present a multi-channel convolution neural network (CNN) for blind 360-degree image quality assessment (MC360IQA). To be consistent with the visual content of 360-degree images seen in the VR device, our model adopts the viewport images as the input. Specifically, we project each 360-degree image into six viewport images to cover omnidirectional visual content. By rotating the longitude of the front view, we can project one omnidirectional image onto lots of different groups of viewport images, which is an efficient way to avoid overfitting. MC360IQA consists of two parts, multi-channel CNN and image quality regressor. Multi-channel CNN includes six parallel ResNet34 networks, which are used to extract the features of the corresponding six viewport images. Image quality regressor fuses the features and regresses them to final scores. The results show that our model achieves the best performance among the state-of-art full-reference (FR) and no-reference (NR) image quality assessment (IQA) models on the available 360-degree IQA database. © 2019 IEEE

关键词:

Image quality Virtual reality Networks (circuits)

作者机构:

  • [ 1 ] [Sun, Wei]Institue of Image Commu. and Infor. Proce, Shanghai Jiao Tong University, China
  • [ 2 ] [Gu, Ke]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Luo, Weike]Institue of Image Commu. and Infor. Proce, Shanghai Jiao Tong University, China
  • [ 4 ] [Min, Xiongkuo]Institue of Image Commu. and Infor. Proce, Shanghai Jiao Tong University, China
  • [ 5 ] [Zhai, Guangtao]Institue of Image Commu. and Infor. Proce, Shanghai Jiao Tong University, China
  • [ 6 ] [Ma, Siwei]School of Electronic Engineering and Computer Science, Peking University, China
  • [ 7 ] [Yang, Xiaokang]Institue of Image Commu. and Infor. Proce, Shanghai Jiao Tong University, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 0271-4310

年份: 2019

卷: 2019-May

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 29

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 5

在线人数/总访问数:650/3900396
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司