• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Akhtar, Faheem (Akhtar, Faheem.) | Li, Jianqiang (Li, Jianqiang.) (学者:李建强) | Pei, Yan (Pei, Yan.) | Liu, Bo (Liu, Bo.) (学者:刘博) | Azeem, Muhammad (Azeem, Muhammad.) | Wang, Qing (Wang, Qing.) | Yang, Ji-Jiang (Yang, Ji-Jiang.)

收录:

EI

摘要:

We propose to use an expert-driven feature selection scheme to diagnose and predict Large for Gestational Age (LGA) fetuses. A Fetus with excessive birth weight exhibits adverse neonatal and maternal complications. Early intervention can slow progression and prevent the upcoming complication of the disease. In this research, four well-known machine learning classifiers with ten-folds cross-validations are used to authenticate the proposed scheme. A Master feature vector is created, and an expert-driven feature selection scheme is proposed, which is later compared with existing published researches, master feature file created, and with an automated feature selection scheme. The best performance metrics (precision and AUC) scores are produced by random forest and logistic regression classifiers with the proposed expert-driven feature selection scheme. The proposed scheme played an essential role in elevating prediction precision and AUC scores from 0.71 and 0.70 to (0.9461 and 0.8172) and (0.9174 and 0.8281), respectively. Therefore, we recommend obstetrician's to update the prognosis process for LGA identification using expert-driven feature selection scheme. © 2019 IEEE.

关键词:

Feature extraction Machine learning Logistic regression Diagnosis Intelligent computing Decision trees Learning systems

作者机构:

  • [ 1 ] [Akhtar, Faheem]Beijing University of Technology, Faculty of Information Technology, Beijing; 100124, China
  • [ 2 ] [Li, Jianqiang]Beijing University of Technology, Faculty of Information Technology, Beijing; 100124, China
  • [ 3 ] [Pei, Yan]University of Aizu, Computer Science Division, Aizu-wakamatsu, Fukushima; 965-8580, Japan
  • [ 4 ] [Liu, Bo]Beijing University of Technology, Faculty of Information Technology, Beijing; 100124, China
  • [ 5 ] [Azeem, Muhammad]University of Sialkot, Faculty of Computing and IT, Sialkot; 51310, Pakistan
  • [ 6 ] [Wang, Qing]Tsinghua University, Tsinghua National Laboratory for Information Science and Technology, Beijing; 100084, China
  • [ 7 ] [Yang, Ji-Jiang]Tsinghua University, Tsinghua National Laboratory for Information Science and Technology, Beijing; 100084, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2019

页码: 3152-3157

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 3

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:209/3910411
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司