• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Tang, Jian (Tang, Jian.) | Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞) | Xu, Zhe (Xu, Zhe.) | Yu, Wen (Yu, Wen.)

收录:

EI Scopus

摘要:

Dioxin (DXN) is a kind of pollutant commonly discharged during municipal solid waste incineration (MSWI). In practical industrial processes, the concentration of DXN emission is measured by using offline analysis, but this method is constrained by long time lag and high cost. This study aims to develop soft measuring model for DXN emission concentration by using easy-to-measure MSWI process variables with the latent structure algorithm. Three latent structure algorithms, namely, linear projection to latent structure (PLS), nonlinear kernel PLS (KPLS), and a new improved general algorithm-based selective ensemble KPLS (IGASENKPLS), are applied to build the DXN estimation model. Results show that the latent structure algorithm can successfully generate DXN models with good prediction performance. Nonlinear KPLS can extract more variations from the dataset than linear PLS, but IGASENKPLS can enhance prediction performance even further. The proposed approach demonstrates the feasibility of using latent structure algorithm to model DXN emission concentration by using collinear, nonlinear, and small-size sampling data. © 2019 IEEE.

关键词:

作者机构:

  • [ 1 ] [Tang, Jian]Faculty of Information Technology, Beijing University of Technology, Beijing; 100024, China
  • [ 2 ] [Tang, Jian]Beijing Key Laboratory of Computational, Intelligence and Intelligent System, Beijing; 100124, China
  • [ 3 ] [Qiao, Junfei]Faculty of Information Technology, Beijing University of Technology, Beijing; 100024, China
  • [ 4 ] [Qiao, Junfei]Beijing Key Laboratory of Computational, Intelligence and Intelligent System, Beijing; 100124, China
  • [ 5 ] [Xu, Zhe]Faculty of Information Technology, Beijing University of Technology, Beijing; 100024, China
  • [ 6 ] [Yu, Wen]Departamento de Control Automatico, CINVESTAV-IPN, Av.IPN 2508, Mexico D.F., 07360, Mexico

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2019

页码: 1714-1719

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:3218/3876219
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司